算法-冒泡排序

排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序非常重要,所以我会花多一点时间来详细讲一讲经典的排序算法。


排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。更为精简的,在《算法图解》这本书中,排序模块只拿选择排序作为典型进行了讲解


我按照时间复杂度把它们分成了三类,带着问题去学习,是最有效的学习方法。所以按照惯例,我还是先给你出一个思考题:插入排序和冒泡排序的时间复杂度相同,都是 O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?你可以先思考一两分钟,带着这个问题,我们开始今天的内容!

如何分析一个“排序算法”?


学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?排序算法的执行效率对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:


1. 最好情况、最坏情况、平均情况时间复杂度
我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。为什么要区分这三种时间复杂度呢?
第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。
第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。


2. 时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。


3. 比较次数和交换(或移动)次数
基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。


排序算法的内存消耗


我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。


原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。插入排序、冒泡排序、选择排序都是原地排序算法。
**

排序算法的稳定性


仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。我通过一个例子来解释一下。


比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。你可能要问了,两个 3 哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?


很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?


最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。借助稳定排序算法,这个问题可以非常简洁地解决。


解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?


稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。


image.jpeg

冒泡排序(Bubble Sort)


我们从冒泡排序开始,冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。下面就不讲具体的排序过程了,一张冒泡排序动图,带你看下冒泡排序的整个过程。
17400545-534a0b911f89ebbf.gif


冒泡排序算法的原理比较容易理解,具体的代码我贴到下面,你可以结合着代码来看我前面讲的原理。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import time

"""
第一个(外层)for循环作用:控制排序的轮数
第二个(内层)for循环作用:控制每一轮里的每一个比较步骤

"""
def bubble_sort(arr):
for i in range(1, len(arr)):
for j in range(0, len(arr)-i):
if arr[j] > arr[j+1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
# 可以配合打印i,j来更好的理解
# print(i,j)
# time.sleep(2)

return arr



def bubble_sort_v2(arr):
"""改进版,避免右侧最大值重复比较"""
for i in range(len(arr) - 1, 0, -1): # 反向遍历
for j in range(0, i): # 由于最右侧的值已经有序,不再比较,每次都减少遍历次数
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
return arr


def main():
array = [3,4,1,2,5,6]
result_array = bubble_sort(array)
print(result_array)


if __name__ == '__main__':
main()

现在,结合刚才我分析排序算法的三个方面,我有三个问题要问你。


第一,冒泡排序是原地排序算法吗?
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。


第二,冒泡排序是稳定的排序算法吗?
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。


第三,冒泡排序的时间复杂度是多少?
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。


最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过,平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。


对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。有序度是数组中具有有序关系的元素对的个数。有序元素对用数学表达式表示就是这样:

1
2

有序元素对:a[i] <= a[j], 如果i < j。

a1ef4cc1999d6bd0af08d8417ee55220.jpg
同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是 n(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作*满有序度**。


逆序度的定义正好跟有序度相反(默认从小到大为有序),我想你应该已经想到了。关于逆序度,我就不举例子讲了。你可以对照我讲的有序度的例子自己看下。

1
2

逆序元素对:a[i] > a[j], 如果i < j。

关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。


我还是拿前面举的那个冒泡排序的例子来说明。要排序的数组的初始状态是 4,5,6,3,2,1 ,其中,有序元素对有 (4,5) (4,6)(5,6),所以有序度是 3。n=6,所以排序完成之后终态的满有序度为 n(n-1)/2=15。


image.jpeg


冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n
(n-1)/2–初始有序度。此例中就是 15–3=12,要进行 12 次交换操作。


对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n(n-1)/2 次交换。最好情况下,初始状态的有序度是 n(n-1)/2,就不需要进行交换。我们可以取个中间值 n(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。


换句话说,平均情况下,需要 n
(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。这个平均时间复杂度推导过程其实并不严格,但是很多时候很实用,毕竟概率论的定量分析太复杂,不太好用。等我们讲到快排的时候,我还会再次用这种“不严格”的方法来分析平均时间复杂度。