递归对我来说真的是晦涩难懂啊,看似简单,但是当动手写代码想逻辑的时候,无从下手的感觉。一本书上说,爱递归的人爱的要死,不爱递归的人恨的要死,还有一种不爱递归但是随后又爱的要死。leigh caldwell 在 stack overflow上说,如果使用循环,程序的效率可能更高,但是使用递归,程序更容易理解。存在即合理,接下来我们看一下递归
推荐注册返佣金的这个功能我想你应该不陌生吧?现在很多 App 都有这个功能。这个功能中,用户 A 推荐用户 B 来注册,用户 B 又推荐了用户 C 来注册。我们可以说,用户 C 的“最终推荐人”为用户 A,用户 B 的“最终推荐人”也为用户 A,而用户 A 没有“最终推荐人”。
一般来说,我们会通过数据库来记录这种推荐关系。在数据库表中,我们可以记录两行数据,其中 actor_id 表示用户 id,referrer_id 表示推荐人 id。
基于这个背景,我的问题是,给定一个用户 ID,如何查找这个用户的“最终推荐人”? 带着这个问题,我们来学习今天的内容,递归(Recursion)!
如何理解“递归”?从我自己学习数据结构和算法的经历来看,我个人觉得,有两个最难理解的知识点,一个是动态规划,另一个就是递归。递归是一种应用非常广泛的算法(或者编程技巧)。
之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。所以,搞懂递归非常重要,否则,后面复杂一些的数据结构和算法学起来就会比较吃力。不过,别看我说了这么多,递归本身可是一点儿都不“高冷”,咱们生活中就有很多用到递归的例子。
周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?别忘了你是程序员,这个可难不倒你,递归就开始排上用场了。于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。
这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。刚刚这个生活中的例子,我们用递推公式将它表示出来就是这样的:
1 | f(n)=f(n-1)+1 其中,f(1)=1 |
f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。有了这个递推公式,我们就可以很轻松地将它改为递归代码,如下:
1 | int f(int n) { |
如果上面找座位的例子你没有明白递归是怎么一回事,那么请读一读下面的问题:
- 如何给一堆数字排序? 答:分成两半,先排左半边再排右半边,最后合并就行了,至于怎么排左边和右边,请重新阅读这句话。
- 孙悟空身上有多少根毛? 答:一根毛加剩下的毛。
- 你今年几岁? 答:去年的岁数加一岁,1999 年我出生。
递归需要满足的三个条件
刚刚这个例子是非常典型的递归,那究竟什么样的问题可以用递归来解决呢?我总结了三个条件,只要同时满足以下三个条件,就可以用递归来解决。
1. 一个问题的解可以分解为几个子问题的解何为子问题?子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。
2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样比如电影院那个例子,你求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。
3. 存在递归终止条件把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。还是电影院的例子,第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件。
如何编写递归代码?
刚刚铺垫了这么多,现在我们来看,如何来写递归代码?我个人觉得,写递归代码最关键的是写出递推公式,找到终止条件,剩下将递推公式转化为代码就很简单了。你先记住这个理论。我举一个例子,带你一步一步实现一个递归代码,帮你理解。
假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:
1 |
|
有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?我们可以用 n=2,n=3 这样比较小的数试验一下。
n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。所以除了 f(1)=1 这一个递归终止条件外,还要有 f(0)=1,表示走 0 个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。
所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:
1 | f(1) = 1; |
有了这个公式,我们转化成递归代码就简单多了。最终的递归代码是这样的:
1 | int f(int n) { |
我总结一下,写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
计算机擅长做重复的事情,所以递归正和它的胃口。而我们人脑更喜欢平铺直叙的思维方式。当我们看到递归时,我们总想把递归平铺展开,脑子里就会循环,一层一层往下调,然后再一层一层返回,试图想搞清楚计算机每一步都是怎么执行的,这样就很容易被绕进去。
对于递归代码,这种试图想清楚整个递和归过程的做法,实际上是进入了一个思维误区。很多时候,我们理解起来比较吃力,主要原因就是自己给自己制造了这种理解障碍。那正确的思维方式应该是怎样的呢?
如果一个问题 A 可以分解为若干子问题 B、C、D,你可以假设子问题 B、C、D 已经解决,在此基础上思考如何解决问题 A。而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层一层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。因此,编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
递归代码要警惕堆栈溢出
在实际的软件开发中,编写递归代码时,我们会遇到很多问题,比如堆栈溢出。而堆栈溢出会造成系统性崩溃,后果会非常严重。为什么递归代码容易造成堆栈溢出呢?我们又该如何预防堆栈溢出呢?我在“栈”那一节讲过,函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。
系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。比如前面的讲到的电影院的例子,如果我们将系统栈或者 JVM 堆栈大小设置为 1KB,在求解 f(19999) 时便会出现如下堆栈报错:
1 |
|
递归代码要警惕重复计算
除此之外,使用递归时还会出现重复计算的问题。刚才我讲的第二个递归代码的例子,如果我们把整个递归过程分解一下的话,那就是这样的:
从图中,我们可以直观地看到,想要计算 f(5),需要先计算 f(4) 和 f(3),而计算 f(4) 还需要计算 f(3),因此,f(3) 就被计算了很多次,这就是重复计算问题。
为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。
除了堆栈溢出、重复计算这两个常见的问题。
递归代码还有很多别的问题。在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销,比如我们前面讲到的电影院递归代码,空间复杂度并不是 O(1),而是 O(n)。
怎么将递归代码改写为非递归代码?
我们刚说了,递归有利有弊,利是递归代码的表达力很强,写起来非常简洁;而弊就是空间复杂度高、有堆栈溢出的风险、存在重复计算、过多的函数调用会耗时较多等问题。所以,在开发过程中,我们要根据实际情况来选择是否需要用递归的方式来实现。那我们是否可以把递归代码改写为非递归代码呢
笼统地讲,是的。因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。但是这种思路实际上是将递归改为了“手动”递归,本质并没有变,而且也并没有解决前面讲到的某些问题,徒增了实现的复杂度。