SVM 是有监督的学习模型,我们需要事先对数据打上分类标签,通过求解最大分类间隔来求解二分类问题。如果要求解多分类问题,可以将多个二分类器组合起来形成一个多分类器。
sklearn 中使用 SVM
在 Python 的 sklearn 工具包中有 SVM 算法,首先需要引用工具包:
1 | from sklearn import svm |
SVM 既可以做回归,也可以做分类器。
当用 SVM 做回归的时候,我们可以使用 SVR 或 LinearSVR。SVR 的英文是 Support Vector Regression。
这篇文章只讲分类,这里只是简单地提一下。当做分类器的时候,我们使用的是 SVC 或者 LinearSVC。SVC 的英文是 Support Vector Classification。
我简单说一下这两者之前的差别。
从名字上你能看出 LinearSVC 是个线性分类器,用于处理线性可分的数据,只能使用线性核函数。上一节,我讲到 SVM 是通过核函数将样本从原始空间映射到一个更高维的特质空间中,这样就使得样本在新的空间中线性可分。
如果是针对非线性的数据,需要用到 SVC。在 SVC 中,我们既可以使用到线性核函数(进行线性划分),也能使用高维的核函数(进行非线性划分)。
创建一个 SVM 分类器
我们首先使用 SVC 的构造函数:
1 | model = svm.SVC(kernel=‘rbf’, C=1.0, gamma=‘auto’) |
这里有三个重要的参数 kernel、C 和 gamma。
kernel 代表核函数的选择,它有四种选择,只不过默认是 rbf,即高斯核函数。
- linear:线性核函数
- poly:多项式核函数
- rbf:高斯核函数(默认)
- sigmoid:sigmoid 核函数
这四种函数代表不同的映射方式,你可能会问,在实际工作中,如何选择这 4 种核函数呢?我来给你解释一下:
线性核函数,是在数据线性可分的情况下使用的,运算速度快,效果好。不足在于它不能处理线性不可分的数据。
多项式核函数可以将数据从低维空间映射到高维空间,但参数比较多,计算量大。
高斯核函数同样可以将样本映射到高维空间,但相比于多项式核函数来说所需的参数比较少,通常性能不错,所以是默认使用的核函数。
了解深度学习的同学应该知道 sigmoid 经常用在神经网络的映射中。因此当选用 sigmoid 核函数时,SVM 实现的是多层神经网络。上面介绍的 4 种核函数,除了第一种线性核函数外,其余 3 种都可以处理线性不可分的数据。
参数 C 代表目标函数的惩罚系数,惩罚系数指的是分错样本时的惩罚程度,默认情况下为 1.0。当 C 越大的时候,分类器的准确性越高,但同样容错率会越低,泛化能力会变差。相反,C 越小,泛化能力越强,但是准确性会降低。
参数 gamma 代表核函数的系数,默认为样本特征数的倒数,即 gamma = 1 / n_features。在创建 SVM 分类器之后,就可以输入训练集对它进行训练。我们使用 model.fit(train_X,train_y),传入训练集中的特征值矩阵 train_X 和分类标识 train_y。特征值矩阵就是我们在特征选择后抽取的特征值矩阵(当然你也可以用全部数据作为特征值矩阵);分类标识就是人工事先针对每个样本标识的分类结果。这样模型会自动进行分类器的训练。我们可以使用 prediction=model.predict(test_X) 来对结果进行预测,传入测试集中的样本特征矩阵 test_X,可以得到测试集的预测分类结果 prediction。
同样我们也可以创建线性 SVM 分类器,使用 model=svm.LinearSVC()。在 LinearSVC 中没有 kernel 这个参数,限制我们只能使用线性核函数。由于 LinearSVC 对线性分类做了优化,对于数据量大的线性可分问题,使用 LinearSVC 的效率要高于 SVC。
如果你不知道数据集是否为线性,可以直接使用 SVC 类创建 SVM 分类器。
在训练和预测中,LinearSVC 和 SVC 一样,都是使用 model.fit(train_X,train_y) 和 model.predict(test_X)。
SVM 进行乳腺癌检测
在了解了如何创建和使用 SVM 分类器后,我们来看一个实际的项目,数据集来自美国威斯康星州的乳腺癌诊断数据集,点击这里进行下载 https://github.com/cystanford/breast_cancer_data/blob/master/data.csv。医疗人员采集了患者乳腺肿块经过细针穿刺 (FNA) 后的数字化图像,并且对这些数字图像进行了特征提取,这些特征可以描述图像中的细胞核呈现。肿瘤可以分成良性和恶性。部分数据截屏如下所示:
数据表一共包括了 32 个字段,代表的含义如下:
上面的表格中,mean 代表平均值,se 代表标准差,worst 代表最大值(3 个最大值的平均值)。每张图像都计算了相应的特征,得出了这 30 个特征值(不包括 ID 字段和分类标识结果字段 diagnosis),实际上是 10 个特征值(radius、texture、perimeter、area、smoothness、compactness、concavity、concave points、symmetry 和 fractal_dimension_mean)的 3 个维度,平均、标准差和最大值。这些特征值都保留了 4 位数字。字段中没有缺失的值。在 569 个患者中,一共有 357 个是良性,212 个是恶性。
好了,我们的目标是生成一个乳腺癌诊断的 SVM 分类器,并计算这个分类器的准确率。首先设定项目的执行流程:
首先我们需要加载数据源;在准备阶段,需要对加载的数据源进行探索,查看样本特征和特征值,这个过程你也可以使用数据可视化,它可以方便我们对数据及数据之间的关系进一步加深了解。
然后按照“完全合一”的准则来评估数据的质量,如果数据质量不高就需要做数据清洗。数据清洗之后,你可以做特征选择,方便后续的模型训练;
在分类阶段,选择核函数进行训练,如果不知道数据是否为线性,可以考虑使用 SVC(kernel=‘rbf’) ,也就是高斯核函数的 SVM 分类器。然后对训练好的模型用测试集进行评估。按照上面的流程,我们来编写下代码,加载数据并对数据做部分的探索:
1 |
|
运行结果中,你能看到 32 个字段里,id 是没有实际含义的,可以去掉。diagnosis 字段的取值为 B 或者 M,我们可以用 0 和 1 来替代。另外其余的 30 个字段,其实可以分成三组字段,下划线后面的 mean、se 和 worst 代表了每组字段不同的度量方式,分别是平均值、标准差和最大值。
1 |
|
然后我们要做特征字段的筛选,首先需要观察下 features_mean 各变量之间的关系,这里我们可以用 DataFrame 的 corr() 函数,然后用热力图帮我们可视化呈现。同样,我们也会看整体良性、恶性肿瘤的诊断情况。
1 |
|
图表展示:
热力图中对角线上的为单变量自身的相关系数是 1。颜色越浅代表相关性越大。所以你能看出来 radius_mean、perimeter_mean 和 area_mean 相关性非常大,compactness_mean、concavity_mean、concave_points_mean 这三个字段也是相关的,因此我们可以取其中的一个作为代表。
那么如何进行特征选择呢?特征选择的目的是降维,用少量的特征代表数据的特性,这样也可以增强分类器的泛化能力,避免数据过拟合。
我们能看到 mean、se 和 worst 这三组特征是对同一组内容的不同度量方式,我们可以保留 mean 这组特征,在特征选择中忽略掉 se 和 worst。同时我们能看到 mean 这组特征中,radius_mean、perimeter_mean、area_mean 这三个属性相关性大,compactness_mean、daconcavity_mean、concave points_mean 这三个属性相关性大。
我们分别从这 2 类中选择 1 个属性作为代表,比如 radius_mean 和 compactness_mean。这样我们就可以把原来的 10 个属性缩减为 6 个属性,代码如下:
1 | # 特征选择 |
对特征进行选择之后,我们就可以准备训练集和测试集:
1 |
|
在训练之前,我们需要对数据进行规范化,这样让数据同在同一个量级上,避免因为维度问题造成数据误差:
1 |
|
最后我们可以让 SVM 做训练和预测了:
1 |
|
运行结果:
1 |
|
乳腺癌诊断分类的 SVM 实战,从这个过程中整个执行的流程,包括数据加载、数据探索、数据清洗、特征选择、SVM 训练和结果评估等环节。sklearn 已经为我们提供了很好的工具,对上节课中讲到的 SVM 的创建和训练都进行了封装,让我们无需关心中间的运算细节。但正因为这样,我们更需要对每个流程熟练掌握,通过实战项目训练数据化思维和对数据的敏感度。
全部代码:
1 | import pandas |