分布式一致性算法 - Paxos(2)

Paxos是共识算法,不是一致性协议

Basic Paxos 只能就单个值(Value)达成共识,一旦遇到为一系列的值实现共识的时候,它就不管用了。虽然兰伯特提到可以通过多次执行 Basic Paxos 实例(比如每接收到一个值时,就执行一次 Basic Paxos 算法)实现一系列值的共识。但是,很多同学读完论文后,应该还是两眼摸黑,虽然每个英文单词都能读懂,但还是不理解兰伯特提到的 Multi-Paxos,为什么 Multi-Paxos 这么难理解呢?


在我看来,兰伯特并没有把 Multi-Paxos 讲清楚,只是介绍了大概的思想,缺少算法过程的细节和编程所必须的细节(比如缺少选举领导者的细节)。这也就导致每个人实现的 Multi-Paxos 都不一样。不过从本质上看,大家都是在兰伯特提到的 Multi-Paxos 思想上补充细节,设计自己的 Multi-Paxos 算法,然后实现它(比如 Chubby 的 Multi-Paxos 实现、Raft 算法等)。


所以在这里,我补充一下:兰伯特提到的 Multi-Paxos 是一种思想,不是算法。而 Multi-Paxos 算法是一个统称,它是指基于 Multi-Paxos 思想,通过多个 Basic Paxos 实例实现一系列值的共识的算法(比如 Chubby 的 Multi-Paxos 实现、Raft 算法等)。 这一点尤其需要你注意。


为了帮你掌握 Multi-Paxos 思想,我会先带你了解,对于 Multi-Paxos 兰伯特是如何思考的,也就是说,如何解决 Basic Paxos 的痛点问题;然后我再以 Chubby 的 Multi-Paxos 实现为例,具体讲解一下。为啥选它呢?因为 Chubby 的 Multi-Paxos 实现,代表了 Multi-Paxos 思想在生产环境中的真正落地,它将一种思想变成了代码实现。贴一段6年前的代码🐂

兰伯特关于 Multi-Paxos 的思考


熟悉 Basic Paxos 的同学可能还记得,Basic Paxos 是通过二阶段提交来达成共识的。在第一阶段,也就是准备阶段,接收到大多数准备响应的提议者,才能发起接受请求进入第二阶段(也就是接受阶段):
aafabff1fe2a26523e9815805ccca6e0.jpg
而如果我们直接通过多次执行 Basic Paxos 实例,来实现一系列值的共识,就会存在这样几个问题:如果多个提议者同时提交提案,可能出现因为提案编号冲突,在准备阶段没有提议者接收到大多数准备响应,协商失败,需要重新协商。


你想象一下,一个 5 节点的集群,如果 3 个节点作为提议者同时提案,就可能发生因为没有提议者接收大多数响应(比如 1 个提议者接收到 1 个准备响应,另外 2 个提议者分别接收到 2 个准备响应)而准备失败,需要重新协商。2 轮 RPC 通讯(准备阶段和接受阶段)往返消息多、耗性能、延迟大。


你要知道,分布式系统的运行是建立在 RPC 通讯的基础之上的,因此,延迟一直是分布式系统的痛点,是需要我们在开发分布式系统时认真考虑和优化的。那么如何解决上面的 2 个问题呢?可以通过引入领导者和优化 Basic Paxos 执行来解决,咱们首先聊一聊领导者。

领导者(Leader)

我们可以通过引入领导者节点,也就是说,领导者节点作为唯一提议者,这样就不存在多个提议者同时提交提案的情况,也就不存在提案冲突的情况了:
af3d6a291d960ace59a88898abb74ef6.jpg
在这里,我补充一点:在论文中,兰伯特没有说如何选举领导者,需要我们在实现 Multi-Paxos 算法的时候自己实现。 比如在 Chubby 中,主节点(也就是领导者节点)是通过执行 Basic Paxos 算法,进行投票选举产生的。那么,如何解决第二个问题,也就是如何优化 Basic Paxos 执行呢?

优化 Basic Paxos 执行

我们可以采用“当领导者处于稳定状态时,省掉准备阶段,直接进入接受阶段”这个优化机制,优化 Basic Paxos 执行。也就是说,领导者节点上,序列中的命令是最新的,不再需要通过准备请求来发现之前被大多数节点通过的提案,领导者可以独立指定提案中的值。这时,领导者在提交命令时,可以省掉准备阶段,直接进入到接受阶段:
3cd72a4a138fe1cde52aedd1b897f954.jpg
你看,和重复执行 Basic Paxos 相比,Multi-Paxos 引入领导者节点之后,因为只有领导者节点一个提议者,只有它说了算,所以就不存在提案冲突。另外,当主节点处于稳定状态时,就省掉准备阶段,直接进入接受阶段,所以在很大程度上减少了往返的消息数,提升了性能,降低了延迟。讲到这儿,你可能会问了:在实际系统中,该如何实现 Multi-Paxos 呢?接下来,我以 Chubby 的 Multi-Paxos 实现为例,具体讲解一下。

Chubby 的 Multi-Paxos 实现

既然兰伯特只是大概的介绍了 Multi-Paxos 思想,那么 Chubby 是如何补充细节,实现 Multi-Paxos 算法的呢?首先,它通过引入主节点,实现了兰伯特提到的领导者(Leader)节点的特性。也就是说,主节点作为唯一提议者,这样就不存在多个提议者同时提交提案的情况,也就不存在提案冲突的情况了。


另外,在 Chubby 中,主节点是通过执行 Basic Paxos 算法,进行投票选举产生的,并且在运行过程中,主节点会通过不断续租的方式来延长租期(Lease)。比如在实际场景中,几天内都是同一个节点作为主节点。如果主节点故障了,那么其他的节点又会投票选举出新的主节点,也就是说主节点是一直存在的,而且是唯一的。其次,在 Chubby 中实现了兰伯特提到的,“当领导者处于稳定状态时,省掉准备阶段,直接进入接受阶段”这个优化机制。


最后,在 Chubby 中,实现了成员变更(Group membership),以此保证节点变更的时候集群的平稳运行。最后,我想补充一点:在 Chubby 中,为了实现了强一致性,读操作也只能在主节点上执行。 也就是说,只要数据写入成功,之后所有的客户端读到的数据都是一致的。具体的过程,就是下面的样子。


所有的读请求和写请求都由主节点来处理。当主节点从客户端接收到写请求后,作为提议者,执行 Basic Paxos 实例,将数据发送给所有的节点,并且在大多数的服务器接受了这个写请求之后,再响应给客户端成功:
7e2c2e194d5a0fda5594c5e4e2d9ecb9.jpg
当主节点接收到读请求后,处理就比较简单了,主节点只需要查询本地数据,然后返回给客户端就可以了:


07501bb8d9015af3fb34cf856fe3ec64.jpgChubby 的 Multi-Paxos 实现,尽管是一个闭源的实现,但这是 Multi-Paxos 思想在实际场景中的真正落地,Chubby 团队不仅编程实现了理论,还探索了如何补充细节。其中的思考和设计非常具有参考价值,不仅能帮助我们理解 Multi-Paxos 思想,还能帮助我们理解其他的 Multi-Paxos 算法(比如 Raft 算法)。

内容小结

重点如下:

  • 兰伯特提到的 Multi-Paxos 是一种思想,不是算法,而且还缺少算法过程的细节和编程所必须的细节,比如如何选举领导者等,这也就导致了每个人实现的 Multi-Paxos 都不一样。而 Multi-Paxos 算法是一个统称,它是指基于 Multi-Paxos 思想,通过多个 Basic Paxos 实例实现一系列数据的共识的算法(比如 Chubby 的 Multi-Paxos 实现、Raft 算法等)。
  • Chubby 实现了主节点(也就是兰伯特提到的领导者),也实现了兰伯特提到的 “当领导者处于稳定状态时,省掉准备阶段,直接进入接受阶段” 这个优化机制,省掉 Basic Paxos 的准备阶段,提升了数据的提交效率,但是所有写请求都在主节点处理,限制了集群处理写请求的并发能力,约等于单机。
  • 因为在 Chubby 的 Multi-Paxos 实现中,也约定了“大多数原则”,也就是说,只要大多数节点正常运行时,集群就能正常工作,所以 Chubby 能容错(n - 1)/2 个节点的故障。
  • 本质上而言,“当领导者处于稳定状态时,省掉准备阶段,直接进入接受阶段”这个优化机制,是通过减少非必须的协商步骤来提升性能的。这种方法非常常用,也很有效。比如,Google 设计的 QUIC 协议,是通过减少 TCP、TLS 的协商步骤,优化 HTTPS 性能。我希望你能掌握这种性能优化思路,后续在需要时,可以通过减少非必须的步骤,优化系统性能。


最后,我想说的是,我个人比较喜欢 Paxos 算法(兰伯特的 Basic Paxos 和 Multi-Paxos),虽然 Multi-Paxos 缺失算法细节,但这反而给我们提供了思考空间,让我们可以反复思考和考据缺失的细节,比如在 Multi-Paxos 中到底需不需要选举领导者,再比如如何实现提案编号等等。