数据分析-决策树分类算法-ID3

在现实生活中,我们会遇到各种选择,不论是选择男女朋友,还是挑选水果,都是基于以往的经验来做判断。如果把判断背后的逻辑整理成一个结构图,你会发现它实际上是一个树状图,这就是我们今天要讲的决策树

决策树的工作原理

决策树基本上就是把我们以前的经验总结出来。我给你准备了一个打篮球的训练集。如果我们要出门打篮球,一般会根据“天气”、“温度”、“湿度”、“刮风”这几个条件来判断,最后得到结果:去打篮球?还是不去?
p1.png
上面这个图就是一棵典型的决策树。我们在做决策树的时候,会经历两个阶段:构造和剪枝。

构造

什么是构造呢?构造就是生成一棵完整的决策树。简单来说,构造的过程就是选择什么属性作为节点的过程,那么在构造过程中,会存在三种节点:

  1. 根节点:就是树的最顶端,最开始的那个节点。在上图中,“天气”就是一个根节点;
  2. 内部节点:就是树中间的那些节点,比如说“温度”、“湿度”、“刮风”;
  3. 叶节点:就是树最底部的节点,也就是决策结果。节点之间存在父子关系。比如根节点会有子节点,子节点会有子子节点,但是到了叶节点就停止了,叶节点不存在子节点。


那么在构造过程中,你要解决三个重要的问题:

  • 选择哪个属性作为根节点;
  • 选择哪些属性作为子节点;
  • 什么时候停止并得到目标状态,即叶节点。

    剪枝

    决策树构造出来之后是不是就万事大吉了呢?也不尽然,我们可能还需要对决策树进行剪枝。剪枝就是给决策树瘦身,这一步想实现的目标就是,不需要太多的判断,同样可以得到不错的结果。之所以这么做,是为了防止“过拟合”(Overfitting)现象的发生。


    “过拟合”这个概念你一定要理解,它指的就是模型的训练结果“太好了”,以至于在实际应用的过程中,会存在“死板”的情况,导致分类错误。


    欠拟合,和过拟合就好比是下面这张图中的第一个和第三个情况一样,训练的结果“太好“,反而在实际应用过程中会导致分类错误。
    p2.png
    造成过拟合的原因之一就是因为训练集中样本量较小。如果决策树选择的属性过多,构造出来的决策树一定能够“完美”地把训练集中的样本分类,但是这样就会把训练集中一些数据的特点当成所有数据的特点,但这个特点不一定是全部数据的特点,这就使得这个决策树在真实的数据分类中出现错误,也就是模型的“泛化能力”差。

    fitting:拟合,就是说这个曲线能不能很好的描述这个样本,有比较好的泛化能力
    过拟合(OverFititing):太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平。
    欠拟合(UnderFitting):样本不够或者算法不精确,测试样本特性没有学到,不具泛化性,拿到新样本后没有办法去准确的判断


泛化能力指的分类器是通过训练集抽象出来的分类能力,你也可以理解是举一反三的能力。如果我们太依赖于训练集的数据,那么得到的决策树容错率就会比较低,泛化能力差。因为训练集只是全部数据的抽样,并不能体现全部数据的特点。


既然要对决策树进行剪枝,具体有哪些方法呢?一般来说,剪枝可以分为
“预剪枝”(Pre-Pruning)和“后剪枝”(Post-Pruning)**。


预剪枝是在决策树构造时就进行剪枝。方法是在构造的过程中对节点进行评估,如果对某个节点进行划分,在验证集中不能带来准确性的提升,那么对这个节点进行划分就没有意义,这时就会把当前节点作为叶节点,不对其进行划分。

后剪枝就是在生成决策树之后再进行剪枝,通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉这个节点子树,与保留该节点子树在分类准确性上差别不大,或者剪掉该节点子树,能在验证集中带来准确性的提升,那么就可以把该节点子树进行剪枝。方法是:用这个节点子树的叶子节点来替代该节点,类标记为这个节点子树中最频繁的那个类。

如何判断要不要去打篮球?

我给你准备了打篮球的数据集,训练数据如下:

我们该如何构造一个判断是否去打篮球的决策树呢?再回顾一下决策树的构造原理,在决策过程中有三个重要的问题:将哪个属性作为根节点?选择哪些属性作为后继节点?什么时候停止并得到目标值?
显然将哪个属性(天气、温度、湿度、刮风)作为根节点是个关键问题,在这里我们先介绍两个指标:纯度信息熵
先来说一下纯度。你可以把决策树的构造过程理解成为寻找纯净划分的过程。数学上,我们可以用纯度来表示,纯度换一种方式来解释就是让目标变量的分歧最小。
我在这里举个例子,假设有 3 个集合:

  • 集合 1:6 次都去打篮球;
  • 集合 2:4 次去打篮球,2 次不去打篮球;
  • 集合 3:3 次去打篮球,3 次不去打篮球。


按照纯度指标来说,集合 1> 集合 2> 集合 3。因为集合 1 的分歧最小,集合 3 的分歧最大。然后我们再来介绍信息熵(entropy)的概念,它表示了信息的不确定度
**
在信息论中,随机离散事件出现的概率存在着不确定性。为了衡量这种信息的不确定性,信息学之父香农引入了信息熵的概念,并给出了计算信息熵的数学公式:

大写Σ用于数学上的总和符号,比如:∑Pi,其中i=1,2,…,T,即为求P1 + P2 + … + PT的和。小写σ用于统计学上的标准差。这种写法表示的就是∑j=1+2+3+…+n。下图:其中i表示下界,n表示上界, k从i开始取数,一直取到n,全部加起来。


p(i|t) 代表了节点 t 为分类 i 的概率,其中 log2 为取以 2 为底的对数。这里我们不是来介绍公式的,而是说存在一种度量,它能帮我们反映出来这个信息的不确定度。当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高。


我举个简单的例子,假设有 2 个集合
集合 1:5 次去打篮球,1 次不去打篮球;
集合 2:3 次去打篮球,3 次不去打篮球。
在集合 1 中,有 6 次决策,其中打篮球是 5 次,不打篮球是 1 次。那么假设:类别 1 为“打篮球”,即次数为 5;类别 2 为“不打篮球”,即次数为 1。那么节点划分为类别 1 的概率是 5/6,为类别 2 的概率是 1/6,带入上述信息熵公式可以计算得出:

同样,集合 2 中,也是一共 6 次决策,其中类别 1 中“打篮球”的次数是 3,类别 2“不打篮球”的次数也是 3,那么信息熵为多少呢?我们可以计算得出:

从上面的计算结果中可以看出,信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低。我们在构造决策树的时候,会基于纯度来构建。
而经典的 “不纯度”的指标有三种,分别是信息增益(ID3 算法)、信息增益率(C4.5 算法)以及基尼指数(Cart 算法)。

ID3算法

我们先看下 ID3 算法。ID3 算法计算的是信息增益,信息增益指的就是划分可以带来纯度的提高,信息熵的下降。它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。在计算的过程中,我们会计算每个子节点的归一化信息熵,即按照每个子节点在父节点中出现的概率,来计算这些子节点的信息熵。所以信息增益的公式可以表示为:

公式中 D 是父亲节点,Di 是子节点,Gain(D,a) 中的 a 作为 D 节点的属性选择。
公式中 D 是父亲节点,Di 是子节点,Gain(D,a) 中的 a 作为 D 节点的属性选择。假设天气 = 晴的时候,会有 5 次去打篮球,5 次不打篮球。其中 D1 刮风 = 是,有 2 次打篮球,1 次不打篮球。D2 刮风 = 否,有 3 次打篮球,4 次不打篮球。那么 a 代表节点的属性,即天气 = 晴。你可以在下面的图例中直观地了解这几个概念。
p9.png
比如针对图上这个例子,D 作为节点的信息增益为:

也就是 D 节点的信息熵 -2 个子节点的归一化信息熵。2 个子节点归一化信息熵 =3/10 的 D1 信息熵 +7/10 的 D2 信息熵。
我们基于 ID3 的算法规则,完整地计算下我们的训练集,训练集中一共有 7 条数据,3 个打篮球,4 个不打篮球,所以根节点的信息熵是:

如果你将天气作为属性的划分,会有三个叶子节点 D1、D2 和 D3,分别对应的是晴天、阴天和小雨。我们用 + 代表去打篮球,- 代表不去打篮球。那么第一条记录,晴天不去打篮球,可以记为 1-,于是我们可以用下面的方式来记录 D1,D2,D3:
D1(天气 = 晴天)={1-,2-,6+}
D2(天气 = 阴天)={3+,7-}
D3(天气 = 小雨)={4+,5-}
我们先分别计算三个叶子节点的信息熵:

因为 D1 有 3 个记录,D2 有 2 个记录,D3 有 2 个记录,所以 D 中的记录一共是 3+2+2=7,即总数为 7。所以 D1 在 D(父节点)中的概率是 3/7,D2 在父节点的概率是 2/7,D3 在父节点的概率是 2/7。那么作为子节点的归一化信息熵 = 3/70.918+2/71.0+2/7*1.0=0.965。
因为我们用 ID3 中的信息增益来构造决策树,所以要计算每个节点的信息增益。
天气作为属性节点的信息增益为,Gain(D , 天气)=0.985-0.965=0.020。
同理我们可以计算出其他属性作为根节点的信息增益,它们分别为 :
Gain(D , 温度)=0.128
Gain(D , 湿度)=0.020
Gain(D , 刮风)=0.020
下图为计算Gain(D , 温度)过程:

我们能看出来温度作为属性的信息增益最大。因为 ID3 就是要将信息增益最大的节点作为父节点,这样可以得到纯度高的决策树,所以我们将温度作为根节点。其决策树状图分裂为下图所示:

然后我们要将上图中第一个叶节点,也就是 D1={1-,2-,3+,4+}进一步进行分裂,往下划分,计算其不同属性(天气、湿度、刮风)作为节点的信息增益,可以得到:
Gain(D , 湿度)=1
Gain(D , 天气)=1
Gain(D , 刮风)=0.3115


我们能看到湿度,或者天气为 D1 的节点都可以得到最大的信息增益,这里我们选取湿度作为节点的属性划分。同理,我们可以按照上面的计算步骤得到完整的决策树,结果如下:

于是我们通过 ID3 算法得到了一棵决策树。ID3 的算法规则相对简单,可解释性强。同样也存在缺陷,比如我们会发现 ID3 算法倾向于选择取值比较多的属性。这样,如果我们把“编号”作为一个属性(一般情况下不会这么做,这里只是举个例子),那么“编号”将会被选为最优属性 。


但实际上“编号”是无关属性的,它对“打篮球”的分类并没有太大作用。所以 ID3 有一个缺陷就是,有些属性可能对分类任务没有太大作用,但是他们仍然可能会被选为最优属性。这种缺陷不是每次都会发生,只是存在一定的概率。在大部分情况下,ID3 都能生成不错的决策树分类。针对可能发生的缺陷,后人提出了新的算法进行改进。